## Micro C Winter Exam 1 - Solution

## PLEASE ANSWER ALL QUESTIONS. <br> PLEASE EXPLAIN YOUR ANSWERS.

## 1. Nash Equilibrium and Subgame-Perfect Nash Equilibrium.

(a) Find all the pure and mixed Nash Equilibria of the following game.

$$
\text { Player } 2
$$

|  |  | $t_{1}$ |  | $t_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $t_{3}$ |  |  |  |  |
| Player 1 | $s_{1}$ | 2,0 | 3,2 | 1,6 |
|  | $s_{2}$ | 3,3 | 2,1 | 0,2 |
|  |  |  |  |  |

Solution: There are two pure-strategy NE: $\left(s_{2}, t_{1}\right)$ and $\left(s_{1}, t_{3}\right)$. For the mixedstrategy equilibrium, let P1's strategy be denoted ( $p, 1-p$ ) and P2's be denoted $\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$. Notice that $t_{2}$ is strictly dominated by $t_{3}$, so in equilibrium $q_{2}=0$.
Thus, the players are indifferent between their (non-dominated strategies) when

$$
\begin{aligned}
q_{1}(2)+\left(1-q_{1}\right)(1)=q_{1}(3)+\left(1-q_{1}\right)(0) & \Leftrightarrow q_{1}=1 / 2 \\
p(0)+(1-p)(3)=p(6)+(1-p)(2) & \Leftrightarrow p=1 / 7
\end{aligned}
$$

So the mixed-strategy NE is $\left(p ; q_{1}, q_{2}\right)=(1 / 7 ; 1 / 2,0)$.
(b) Suppose now that we introduce a new strategy for Player 1. Denote the corresponding game by $G$ :

Player 2

|  |  | $t_{1}$ |  | $t_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $t_{3}$ |  |  |  |  |
| Player | $s_{1}$ | 2,0 | 3,2 | 1,6 |
|  | $s_{2}$ | 3,3 | 2,1 | 0,2 |
|  | $s_{3}$ | 1,4 | 10,10 | 0,12 |
|  |  |  |  |  |

Use iterated elimination of strictly dominated strategies to simplify the game. Explain briefly each step ( 1 sentence). What is the set of Nash Equilibria of $G$ ? (Hint: No new calculations are required.)
Solution: Again, $t_{2}$ is strictly dominated by $t_{3}$. After eliminating $t_{2}$, then $s_{3}$ is strictly dominated by $s_{1}$. After eliminating $s_{3}$, no strategies are strictly dominated. This game is equal to the game in (a) after eliminating the strictly dominated strategy $t_{2}$. Hence, the set of NE is the same in the two games.
(c) Now suppose we repeat $G$ twice. Denote the resulting game by $G(2)$. How many proper subgames are there (not counting the game itself)? Show that there is a Subgame-perfect Nash Equilibrium of $G(2)$ in which $\left(s_{3}, t_{2}\right)$ is played in stage 1 .
Solution: One proper subgame after each possible outcome in $G$ : 9 proper subgames. Proposed equilibrium strategies: in stage 1 , play $\left(s_{3}, t_{2}\right)$; in stage 2 , play $\left(s_{1}, t_{3}\right)$ on the equilibrium path and $\left(s_{2}, t_{1}\right)$ off the equilibrium path.

Check deviations: In stage 2, a NE is played in each subgame, so no profitable deviations. In stage $1, \mathrm{P} 1$ gets $10+1=11$ on the equilibrium path, and at most $3+3<11$ from a deviation. P2 gets $10+6=16$ on the equilibrium path, and at most $12+3<16$ from a deviation. Hence, the proposed equilibrium strategies form a SPNE.
2. Signaling. Consider the following signaling game.

(a) Find all the (pure strategy) separating Perfect Bayesian Equilibria (PBE).

Solution: $(L R, u u ; p=1, q=0)$ is the unique separating PBE.
Case 1. Suppose $m\left(t_{1}\right)=L$ and $m\left(t_{2}\right)=R$. Then $p=1$ and $q=0$. Thus, $a(L)=u$ and $a(R)=u$. Can check that $u_{S}\left(L, u ; t_{1}\right) \geq u_{S}\left(R, u ; t_{1}\right)$ and $u_{S}\left(R, u ; t_{2}\right) \geq$ $u_{S}\left(L, u ; t_{2}\right)$ hold. Hence: PBE.
Case 2. Suppose $m\left(t_{1}\right)=R$ and $m\left(t_{2}\right)=L$. Then $p=0$ and $q=1$. Thus, $a(L)=d$ and $a(R)=d$. Can verify that $u_{S}\left(R, d ; t_{1}\right)<u_{S}\left(L, d ; t_{1}\right)$. Hence, not a PBE.
(b) Find the (pure strategy) pooling equilibrium in which both types send message $L$. Does it satisfy signaling requirement 5 (SR5)? Explain briefly.
Solution: Suppose $m\left(t_{1}\right)=m\left(t_{2}\right)=L$. Then $a(L)=u$ (since $\frac{1}{2}(2)+\frac{1}{2}(0)>$ $\left.\frac{1}{2}(0)+\frac{1}{2}(1)\right)$. Check sender's incentives: $u_{S}\left(L, u ; t_{1}\right) \geq u_{S}\left(R, a(R) ; t_{1}\right)$ for all $a(R)$ whereas $u_{S}\left(L, u ; t_{2}\right) \geq u_{S}\left(R, a(R) ; t_{2}\right)$ only if $a(R)=d$. It is optimal for the receiver to choose $a(R)=d$ if

$$
q(1)+(1-q)(1) \geq q(0)+(1-q)(3) \Leftrightarrow q \geq 2 / 3
$$

Thus: ( $L L, u d ; p=1 / 2, q \geq 2 / 3$ ) is a pooling PBE.
Notice that $R$ is strictly dominated by $L$ for $t_{1}$, but not for $t_{2}$. Therefore, SR5 prescribes that $q=0$. Hence, the pooling PBE we just found does not satisfy SR5.
(c) Suppose you are a politician and you want to prove that you are trustworthy and uncorruptible.
i. Give an example of a signal that is not credible and explain briefly (1 sentence) why it is not credible.
ii. Give an example of a signal that is credible and explain briefly (1 sentence) why it is credible.

Solution: A non-credible signal could for instance be 'cheap talk': both kinds of politicians would be expected to claim to be trustworthy. A credible signal could be to introduce tougher anti-corruption legislation and publishing one's own financial information, both of which are supposedly more costly for a corrupt politician.
3. Coalitions. Three entrepreneurs are considering starting a new tech company. They are free to form a company of any size between themselves. Entrepreneurs A and B are very experienced, with A being slightly more experienced than B, whereas entrepreneur C has no experience whatsoever. If entrepreneurs A and B work together in the company, the value of the company is 5000 gazillion dollars (regardless of whether entrepreneur C joins the company). If entrepreneur A starts the company alone or with C , it is worth 2000 gazillion dollars. If entrepreneur B starts the company alone or with C, it is worth 1000 gazillion dollars. If entrepreneur C starts the company alone, it is worth 0 gazillion dollars.
(a) Think of this situation as a coalitional game with transferable payoffs. Write down the value of each coalition.
Solution: The values are:

$$
\begin{aligned}
V(A B C)=V(A B) & =5000, \\
V(A C)=V(A) & =2000, \\
V(B C)=V(B) & =1000, \\
V(C) & =0 .
\end{aligned}
$$

(b) Find the core of this game.

Solution: The coalition values give us the following restrictions:

$$
\begin{aligned}
V_{A}+V_{B} & \geq 5000, \\
V_{A} & \geq 2000, \\
V_{B} & \geq 1000, \\
V_{C} & \geq 0 .
\end{aligned}
$$

Hence, the core is equal to $\left\{\left(V_{A}, V_{B}, V_{C}\right)=(2000+v, 3000-v, 0), v \in[0,2000]\right\}$.
4. Spence education model. Consider the following version of Spence's education signaling model, where a firm is hiring a worker. Workers are characterized by their type $\theta$, which measures their ability. There are two worker types: $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$. Nature chooses the worker's type, with $p_{H}=\mathbb{P}\left(\theta=\theta_{H}\right)$ and $p_{L}=\mathbb{P}\left(\theta=\theta_{L}\right)=1-p_{H}$. The worker observes his own type, but the firm does not.

The worker can choose his level of education: $e \in \mathbb{R}^{+}$. The cost to him of acquiring this education is

$$
c_{\theta}(e)=2 \cdot \frac{e}{\theta} .
$$

Education is observed by the firm, who then forms beliefs about the worker's type: $\mu(\theta \mid e)$. We assume that the marginal productivity of a worker is equal to his ability and that the firm is in competition such that it pays the marginal productivity: $w(e)=\mathbb{E}(\theta \mid e)$. Thus, the payoff to a worker conditional on his type and education is

$$
u_{\theta}(e)=w(e)-c_{\theta}(e) .
$$

Suppose for this exercise that $\theta_{H}=3$ and $\theta_{L}=1$.
(a) In a separating equilibrium the low-ability worker chooses education level $e_{L}$ and obtains wage $w_{L}=w\left(e_{L}\right)$. Is it possible that $e_{L}>0$ ? Explain briefly (max. 3 sentences).
Solution: No. Suppose $e_{L}>0$. In a separating equilibrium, $\theta_{L}$ gets $1-e_{L}$. For any beliefs we have $u_{L}(0)=w(0) \geq E\left(\theta_{L}\right)=1>1-e_{L}$ : profitable deviation.
(b) Find a separating pure strategy Perfect Bayesian Equilibrium where the two types choose education levels $e_{L}$ and $e_{H}$, respectively, and the low ability type is indifferent between choosing $e_{L}$ and $e_{H}$. Assume that off the equilibrium path, the firm assigns zero probability to the worker being type $\theta_{H}$.
Solution: By assumption, $\mu\left(\theta_{H} \mid e\right)$ is equal to 1 if $e=e_{H}$ and equal to 0 otherwise. Thus, $w(e)$ is equal to 3 when $e=e_{H}$ and equal to 1 otherwise. We argued above that $e_{L}=0$ in equilibrium. Given $w(e), e=e_{L}=0$ strictly dominates all $e \neq e_{H}$ for both types. Hence, only the strategies $e_{L}$ and $e_{H}$ need to be considered. To make the low type indifferent:

$$
u_{L}(0)=u_{L}\left(e_{H}\right) \Leftrightarrow 1=3-\frac{2 e_{H}}{1} \Leftrightarrow e_{H}=1 .
$$

Clearly, the high type prefers $e_{H}=1$ as

$$
u_{H}\left(e_{H}\right) \geq u_{H}(0) \Leftrightarrow 3-\frac{2 e_{H}}{3}=\frac{7}{3} \geq 1
$$

holds. Hence: the specified $w(e)$ and $\mu(\cdot \mid e)$, together with $e_{L}=0$ and $e_{H}=1$ form a PBE.
(c) Let $p=p_{H}$. Find a pooling pure strategy Perfect Bayesian Equilibrium in which both types choose education level $\bar{e}$, and the low ability type is indifferent between choosing $e=0$ and $e=\bar{e}$. Assume that off the equilibrium path, the firm assigns zero probability to the worker being type $\theta_{H}$. Does the pooling equilibrium of (c) satisfy SR6? You can show this either graphically or algebraically.
Solution: By assumption, $\mu\left(\theta_{H} \mid e\right)$ is equal to $p$ if $e=\bar{e}$ and equal to 0 otherwise. Thus, $w(e)$ is equal to $p(3)+(1-p)(1)=1+2 p$ when $e=\bar{e}$ and equal to 1 otherwise. Given $w(e), e=0$ strictly dominates all $e \neq \bar{e}$ for both types. Hence, only these two strategies need to be considered. To make the low type indifferent:

$$
u_{L}(0)=u_{L}(\bar{e}) \Leftrightarrow 1=1+2 p-\frac{2 \bar{e}}{1} \Leftrightarrow \bar{e}=p .
$$

Clearly, the high type prefers $e=\bar{e}=p$ over $e=0$ as

$$
u_{H}(\bar{e}) \geq u_{H}(0) \Leftrightarrow 1+2 p-\frac{2 \bar{e}}{3}=1+\frac{4 p}{3} \geq 1
$$

holds. Hence: the specified $w(e), \mu(\cdot \mid e)$, together with $\bar{e}=p$ form a PBE.
Checking SR6: For the low-ability type, the equilibrium strategy strictly dominates $e$ whenever

$$
1+2 p-\frac{2 \bar{e}}{1}>3-\frac{2 e}{1} \Leftrightarrow e>1 \text {. }
$$

For the high-ability type, the equilibrium strategy strictly dominates $e$ whenever

$$
1+2 p-\frac{2 \bar{e}}{3}>3-\frac{2 e}{3} \Leftrightarrow e>3-2 p
$$

Hence, $e \in(1,3-2 p)$ are equilibrium dominated for $\theta_{L}$ but not for $\theta_{H}$. SR6: $\mu\left(\theta_{H} \mid e\right)=1$ and hence $w(e)=3$ for $e \in(1,3-2 p)$. The pooling equilibrium does not satisfy SR6.

