Micro C Winter Exam 1 - Solution

PLEASE ANSWER ALL QUESTIONS. PLEASE EXPLAIN YOUR ANSWERS.

1. Nash Equilibrium and Subgame-Perfect Nash Equilibrium.

(a) Find all the pure and mixed Nash Equilibria of the following game.

		Player 2		
		t_1	t_2	t_3
Player 1	s_1	2,0	3, 2	1, 6
	s_2	3, 3	2, 1	0,2

Solution: There are two pure-strategy NE: (s_2, t_1) and (s_1, t_3) . For the mixedstrategy equilibrium, let P1's strategy be denoted (p, 1 - p) and P2's be denoted $(q_1, q_2, 1 - q_1 - q_2)$. Notice that t_2 is strictly dominated by t_3 , so in equilibrium $q_2 = 0$.

Thus, the players are indifferent between their (non-dominated strategies) when

$$q_1(2) + (1 - q_1)(1) = q_1(3) + (1 - q_1)(0) \Leftrightarrow q_1 = 1/2$$

$$p(0) + (1 - p)(3) = p(6) + (1 - p)(2) \Leftrightarrow p = 1/7.$$

So the mixed-strategy NE is $(p; q_1, q_2) = (1/7; 1/2, 0)$.

(b) Suppose now that we introduce a new strategy for Player 1. Denote the corresponding game by G:

	Player 2			
	t_1	t_2	t_3	
s_1	2,0	3, 2	1, 6	
Player 1 s_2	3, 3	2, 1	0, 2	
s_3	1,4	10,10	0, 12	

Use iterated elimination of strictly dominated strategies to simplify the game. Explain briefly each step (1 sentence). What is the set of Nash Equilibria of G? (*Hint*: No new calculations are required.)

Solution: Again, t_2 is strictly dominated by t_3 . After eliminating t_2 , then s_3 is strictly dominated by s_1 . After eliminating s_3 , no strategies are strictly dominated. This game is equal to the game in (a) after eliminating the strictly dominated strategy t_2 . Hence, the set of NE is the same in the two games.

(c) Now suppose we repeat G twice. Denote the resulting game by G(2). How many proper subgames are there (not counting the game itself)? Show that there is a Subgame-perfect Nash Equilibrium of G(2) in which (s_3, t_2) is played in stage 1. **Solution**: One proper subgame after each possible outcome in G: 9 proper subgames. Proposed equilibrium strategies: in stage 1, play (s_3, t_2) ; in stage 2, play (s_1, t_3) on the equilibrium path and (s_2, t_1) off the equilibrium path. Check deviations: In stage 2, a NE is played in each subgame, so no profitable deviations. In stage 1, P1 gets 10 + 1 = 11 on the equilibrium path, and at most 3 + 3 < 11 from a deviation. P2 gets 10 + 6 = 16 on the equilibrium path, and at most 12 + 3 < 16 from a deviation. Hence, the proposed equilibrium strategies form a SPNE.

2. Signaling. Consider the following signaling game.

(a) Find all the (pure strategy) separating Perfect Bayesian Equilibria (PBE). **Solution**: (LR, uu; p = 1, q = 0) is the unique separating PBE. Case 1. Suppose $m(t_1) = L$ and $m(t_2) = R$. Then p = 1 and q = 0. Thus, a(L) = u and a(R) = u. Can check that $u_S(L, u; t_1) \ge u_S(R, u; t_1)$ and $u_S(R, u; t_2) \ge u_S(L, u; t_2)$ hold. Hence: PBE. Case 2. Suppose $m(t_1) = R$ and $m(t_2) = L$. Then p = 0 and q = 1. Thus, a(L) = d

and a(R) = d. Can verify that $u_S(R, d; t_1) < u_S(L, d; t_1)$. Hence, not a PBE.

(b) Find the (pure strategy) pooling equilibrium in which both types send message L. Does it satisfy signaling requirement 5 (SR5)? Explain briefly. **Solution:** Suppose $m(t_1) = m(t_2) = L$. Then a(L) = u (since $\frac{1}{2}(2) + \frac{1}{2}(0) > \frac{1}{2}(0) + \frac{1}{2}(1)$). Check sender's incentives: $u_S(L, u; t_1) \ge u_S(R, a(R); t_1)$ for all a(R) whereas $u_S(L, u; t_2) \ge u_S(R, a(R); t_2)$ only if a(R) = d. It is optimal for the receiver to choose a(R) = d if

$$q(1) + (1 - q)(1) \ge q(0) + (1 - q)(3) \Leftrightarrow q \ge 2/3.$$

Thus: $(LL, ud; p = 1/2, q \ge 2/3)$ is a pooling PBE. Notice that R is strictly dominated by L for t_1 , but not for t_2 . Therefore, SR5 prescribes that q = 0. Hence, the pooling PBE we just found does not satisfy SR5.

- (c) Suppose you are a politician and you want to prove that you are trustworthy and uncorruptible.
 - i. Give an example of a signal that is not credible and explain briefly (1 sentence) why it is not credible.
 - ii. Give an example of a signal that is credible and explain briefly (1 sentence) why it is credible.

Solution: A non-credible signal could for instance be 'cheap talk': both kinds of politicians would be expected to claim to be trustworthy. A credible signal could be to introduce tougher anti-corruption legislation and publishing one's own financial information, both of which are supposedly more costly for a corrupt politician.

- 3. Coalitions. Three entrepreneurs are considering starting a new tech company. They are free to form a company of any size between themselves. Entrepreneurs A and B are very experienced, with A being slightly more experienced than B, whereas entrepreneur C has no experience whatsoever. If entrepreneurs A and B work together in the company, the value of the company is 5000 gazillion dollars (regardless of whether entrepreneur C joins the company). If entrepreneur A starts the company alone or with C, it is worth 2000 gazillion dollars. If entrepreneur B starts the company alone or with C, it is worth 1000 gazillion dollars. If entrepreneur C starts the company alone, it is worth 0 gazillion dollars.
 - (a) Think of this situation as a coalitional game with transferable payoffs. Write down the value of each coalition.

Solution: The values are:

$$V(ABC) = V(AB) = 5000,$$

 $V(AC) = V(A) = 2000,$
 $V(BC) = V(B) = 1000,$
 $V(C) = 0.$

(b) Find the core of this game.Solution: The coalition values give us the following restrictions:

$$V_A + V_B \ge 5000,$$
$$V_A \ge 2000,$$
$$V_B \ge 1000,$$
$$V_C \ge 0.$$

Hence, the core is equal to $\{(V_A, V_B, V_C) = (2000 + v, 3000 - v, 0), v \in [0, 2000]\}.$

4. Spence education model. Consider the following version of Spence's education signaling model, where a firm is hiring a worker. Workers are characterized by their type θ , which measures their ability. There are two worker types: $\theta \in \{\theta_L, \theta_H\}$. Nature chooses the worker's type, with $p_H = \mathbb{P}(\theta = \theta_H)$ and $p_L = \mathbb{P}(\theta = \theta_L) = 1 - p_H$. The worker observes his own type, but the firm does not.

The worker can choose his level of education: $e \in \mathbb{R}^+$. The cost to him of acquiring this education is

$$c_{\theta}(e) = 2 \cdot \frac{e}{\theta}.$$

Education is observed by the firm, who then forms beliefs about the worker's type: $\mu(\theta|e)$. We assume that the marginal productivity of a worker is equal to his ability and that the firm is in competition such that it pays the marginal productivity: $w(e) = \mathbb{E}(\theta|e)$. Thus, the payoff to a worker conditional on his type and education is

$$u_{\theta}(e) = w(e) - c_{\theta}(e)$$

Suppose for this exercise that $\theta_H = 3$ and $\theta_L = 1$.

(a) In a separating equilibrium the low-ability worker chooses education level e_L and obtains wage $w_L = w(e_L)$. Is it possible that $e_L > 0$? Explain briefly (max. 3 sentences).

Solution: No. Suppose $e_L > 0$. In a separating equilibrium, θ_L gets $1 - e_L$. For any beliefs we have $u_L(0) = w(0) \ge E(\theta_L) = 1 > 1 - e_L$: profitable deviation.

(b) Find a separating pure strategy Perfect Bayesian Equilibrium where the two types choose education levels e_L and e_H , respectively, and the low ability type is indifferent between choosing e_L and e_H . Assume that off the equilibrium path, the firm assigns zero probability to the worker being type θ_H .

Solution: By assumption, $\mu(\theta_H|e)$ is equal to 1 if $e = e_H$ and equal to 0 otherwise. Thus, w(e) is equal to 3 when $e = e_H$ and equal to 1 otherwise. We argued above that $e_L = 0$ in equilibrium. Given w(e), $e = e_L = 0$ strictly dominates all $e \neq e_H$ for both types. Hence, only the strategies e_L and e_H need to be considered. To make the low type indifferent:

$$u_L(0) = u_L(e_H) \Leftrightarrow 1 = 3 - \frac{2e_H}{1} \Leftrightarrow e_H = 1.$$

Clearly, the high type prefers $e_H = 1$ as

$$u_H(e_H) \ge u_H(0) \Leftrightarrow 3 - \frac{2e_H}{3} = \frac{7}{3} \ge 1$$

holds. Hence: the specified w(e) and $\mu(\cdot|e)$, together with $e_L = 0$ and $e_H = 1$ form a PBE.

(c) Let $p = p_H$. Find a pooling pure strategy Perfect Bayesian Equilibrium in which both types choose education level \overline{e} , and the low ability type is indifferent between choosing e = 0 and $e = \overline{e}$. Assume that off the equilibrium path, the firm assigns zero probability to the worker being type θ_H . Does the pooling equilibrium of (c) satisfy SR6? You can show this either graphically or algebraically.

Solution: By assumption, $\mu(\theta_H|e)$ is equal to p if $e = \bar{e}$ and equal to 0 otherwise. Thus, w(e) is equal to p(3) + (1-p)(1) = 1 + 2p when $e = \bar{e}$ and equal to 1 otherwise. Given w(e), e = 0 strictly dominates all $e \neq \bar{e}$ for both types. Hence, only these two strategies need to be considered. To make the low type indifferent:

$$u_L(0) = u_L(\bar{e}) \Leftrightarrow 1 = 1 + 2p - \frac{2\bar{e}}{1} \Leftrightarrow \bar{e} = p.$$

Clearly, the high type prefers $e = \bar{e} = p$ over e = 0 as

$$u_H(\bar{e}) \ge u_H(0) \Leftrightarrow 1 + 2p - \frac{2\bar{e}}{3} = 1 + \frac{4p}{3} \ge 1$$

holds. Hence: the specified w(e), $\mu(\cdot|e)$, together with $\bar{e} = p$ form a PBE.

Checking SR6: For the low-ability type, the equilibrium strategy strictly dominates e whenever

$$1+2p-\frac{2\bar{e}}{1}>3-\frac{2e}{1}\Leftrightarrow e>1$$

For the high-ability type, the equilibrium strategy strictly dominates e whenever

$$1 + 2p - \frac{2\overline{e}}{3} > 3 - \frac{2e}{3} \Leftrightarrow e > 3 - 2p.$$

Hence, $e \in (1, 3 - 2p)$ are equilibrium dominated for θ_L but not for θ_H . SR6: $\mu(\theta_H|e) = 1$ and hence w(e) = 3 for $e \in (1, 3 - 2p)$. The pooling equilibrium does not satisfy SR6.